
Ultralight Nanolattices with Co-Optimized Mechanical, Thermal, and Optical Properties

PI: Chih-Hao Chang

Department of Mechanical & Aerospace Engineering, North Carolina State University

Scientific/Technical Impact:

- Develop nanolithography and atomic layer deposition (ALD) process to control ordered,
 3D lattice parameters with nm-level precision
- Design nanomaterials like macroscale bridges and lattice towers
- Enables ultralight materials with:
 - ✓ Enhanced mechanical strength
 - ✓ Ultralow thermal conductivity
 - ✓ Broadband optical clarity

Objectives/Key Innovation:

- Design hollow-core tubular nanolattice to directly tailor properties in multiple physical domains:
 - ✓ <u>Mechanical</u>: Ordered lattice/hollow core enable optimal stiffness scaling at ultralow density.
 - ✓ <u>Thermal</u>: Nanoscale thin shells suppresses thermal conductivity by increasing surface phonon scattering
 - ✓ <u>Optical</u>: Subwavelength lattice period reduces optical scattering for broadband clarity

Potential Application(s):

- Replace silica aerogel with stronger, optically clear, thermal insulating materials
- Enables transparent, energy-dissipation material for impact-absorbing windows
- Enable radiation-shielding coating with extremely high surface area/volume ratio

